“数学教学要从学生的生活经验和已有的知识背景出发,使学生感到数学就在自已的身边,在生活中学数学。接下来是为大家带来的分数除法的教学反思,望大家喜欢。
分数除法的教学反思范文一
一、问题展示:
在分数除法这一单元中,主要展示的是分数除以整数、整数除以分数、分数除以分数这三种类型的计算方法,其中,在分数除以整数的教学过程中,学生接受得比较快,学习效果也很好,但是在教学整数除以分数后,通过学生的练习反馈,发现学生在计算中出错比较多,主要表现在一下几方面:
1.在除号与除数的同步变化中,学生忘记将除号变成乘号。
2.在除数变成其倒数的时候,学生误将被除数也变成了倒数。
3.计算时约分的没有及时约分,导致答案不准确。
二、原因分析
为什么会形成这些错误现象,通过对比分析,可能有一下原因:
1.教学方法上:例题讲解分量不够;教学语速较快;学困生板演机会不够多;讲得多、板书方面写得少。
2.学生学法上:受分数除以整数的教学影响,形成了思维定势,以为每次都是分数要变成倒数,整数不变,从而导致同步变化出现错误;其次,学生听课过程中不善于抓重点,在分数除法中,被除数是不能变的,同步变化指的是除号和除数的变化;最后,学生的学习态度和学习习惯也直接影响了本科的教学效果。
三、解决办法
1.增加学生板演的机会,
2.课堂上,对于关键性的词语,要求学生齐读,用以加深印象。
3.辅差工作要求学生以同位为单位,进行个别辅导。
分数除法的教学反思范文二
短短的40分钟的课上完了,但是其中暴露出来的问题却是很多,这从侧面也显现了作为一名新教师的我还是不成熟,仍然有许多地方需要改进。
首先,从整体上来说,这堂课还不够完整。一堂课应该由问题引入——新课探索——巩固练习——课堂小结——布置作业所构成。但是我的这堂课在小结后就匆匆结束了,并且小结进行的也是相当的仓促。显然,在整体布局和时间的分配方面仍需要加强。
其次,在这堂课中,或许是学生的紧张,或许是学生的确掌握的不够,导致出现了很多没有预料到的问题。而对于这些问题,我的应变的能力就显的很薄弱,有些问题我不明白该如何的处理,因此只能草草的让其他学生报了正确的答案后囫囵带过而已。而这个问题恰恰是需要自己去着力解决的。学生产生了问题本是展现老师水平的时候,针对错误的答案,可以让学生们讨论“错误的原因”,“正确的该是什么”等等;在措词上也应该尽量避免“对吗?”,“正确吗?”等等看似“疑问”实则否定的话,而应采取“还有其它答案吗?”之类的语句,让其它学生去思考。因此,对于这个问题需要更加详细的备课,更加巩固的考虑
再者,在概念的引出之前事实上我只采用了一个例子。但事实上,一个例子,是不具代表性,相反,应采用更多的例子,正例,反例等等,必要时,教师还可以创造一些错误的题目来让学生判断。而其最终的目的是为了让学生更清晰,更透彻的理解这个概念,方便学生最后自己概括出概念。因此,张波老师也建议将概念后面的巩固练习提上来,放在概念形成之前,作为辨析进行。
另外,在课堂上,学生应该是主体,教师只是作为引导。我们需要把更多的时间交给学生,让他们去思考,去讨论,让学生通过老师设计好的有层次的阶梯一步一步自己发现,自己解决问题,让学生真正的“做数学”。而不是老师灌输学生接受。
这是一堂非常具有教育意义的课,课堂上暴露了相当多的问题,其他老师也给我指出了各种有效的改进方法。相信通过这次机会我会得到很大的进步。
分数除法的教学反思范文三
1.以解决问题入手,感受分数的价值。
从分饼的问题开始引入,让学生在解决问题的过程中,感受当商不能用整数表示时,可以用分数来表示商。本课主要从两个层面展开,一是借助学生原有的知识,用分数的意义来解决把1个饼平均分成若干份,商用分数来表示;二是借助实物操作,理解几个饼平均分成若干份,也可以用分数来表示商。而这两个层面展开,均从问题解决的角度来设计的。
2.分数意义的拓展与除法之间关系的理解同步。
当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。
教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。整节课教学有以下特点:
1.提供丰富的素材,经历“数学化”过程。
分数与除法关系的理解,是以具体可感的实物、图片为媒介,用动手操作为方式,在丰富的表象的支撑下生成数学知识,是一个不断丰富感性积累,并逐步抽象、建模的过程。在这个过程中,关注了以下几个方面:一是提供丰富数学学习材料,二是在充分使用这些材料的基础上,学生逐步完善自己发现的结论,从文字表达、到文字表示的等式再到用字母表示,经历从复杂到简洁,从生活语言到数学语言的过程,也是经历了一个具体到抽象的过程。
2.问题寓于方法,内容承载思想。
数学学习是一个问题解决的过程,方法自然就寓于其中;学习内容则承载着数学思想。也就是说,数学知识本身仅仅是我们学习数学的一方面,更为重要的是以知识为载体渗透数学思想方法。
就分数与除法而言,笔者以为如果仅仅为得出一个关系式而进行教学,仅仅是抓住了冰山一角而已。实际上,借助于这个知识载体,我们还要关注蕴藏其中的归纳、比较等思想方法,以及如何运用已有知识解决问题的方法,从而提高学生的数学素养。